MatWeb - Material Property Data Advertise with MatWeb!     Register Now
Data sheets for over 180,000 metals, plastics, ceramics, and composites.
MatWeb - Material Property Data HOME  •   SEARCH  •   TOOLS  •   SUPPLIERS  •   FOLDERS  •   ABOUT US  •   FAQ  •   LOG IN    
Recently Viewed Materials (most recent at top)  

Login to see your most recently viewed materials here.

Or if you don't have an account with us yet, then click here to register.

  Searches:   Advanced  | Category  | Property  | Metals  | Trade Name  | Manufacturer  | Recently Viewed Materials
  

Master Bond adhesives

(Viewing data as-entered. Click here to return)
Kinetics MIM 420 Stainless Steel (Vacuum Heat Treat)
Categories: Metal; Ferrous Metal; Stainless Steel; T 400 Series Stainless Steel

Material Notes: Martensitic stainless steel. Very good strength, hardness, and wear resistance while offering some corrosion resistance. Magnetic. Less distortion typically with vacuum heat treat over that of oil quench. Often used for aerospace, automotive, cutlery, defense, power hand tools, sporting equipment industry, surgical instruments, and applications where high strength and hardness, and some corrosion resistance is required.

Property values reported are typical for Kinetics' MIM products.

Metal Injection Molding General Notes: Fine metal powders (generally <25 microns in diameter) are combined with a polymer binder system to form a feedstock suitable for injection molding. Kinetics' feedstock is compounded using specific binder and metal powder formulations to control consistency, quality, and dimensional repeatability of parts produced. While standard plastic injection molding machines and molds are used to produce MIM parts, due to the presence of the polymer binder in MIM feedstocks, mold cavities are designed approximately 20% larger than the final part size. Like plastics, MIM molds may have multiple cavities, inserts, slides, unscrewing cores, and hot runner systems. After molding, green parts are debound and sintered at temperatures up to 2,600°F. During debinding, the polymer binder breaks down and dissipates while the metal particles retain all of the molded features. The metal particles fuse together during sintering and the part shrinks approximately 20% to form a solid metal part.

Information provided by Kinetics, Inc.

Key Words: Metal Injection Molding, UNS S42000, AISI 420
Vendors: No vendors are listed for this material. Please click here if you are a supplier and would like information on how to add your listing to this material.
 
Physical PropertiesOriginal ValueComments
Density 7.61 g/ccSintered
 
Mechanical PropertiesOriginal ValueComments
Tensile Strength, Ultimate 252 ksi
Tensile Strength, Yield 186 ksi
Elongation at Break 3.5 %in 1 inch
Reduction of Area 5.0 %
Charpy Impact, Unnotched 61.0 ft-lb1/2 size bar
 
Component Elements PropertiesOriginal ValueComments
Carbon, C 0.15 - 0.40 %
Chromium, Cr 12 - 14 %
Iron, Fe 81.6 - 87.9 %by difference
Manganese, Mn <= 1.0 %
Other <= 2.0 %
Silicon, Si <= 1.0 %
 
Descriptive Properties
Hardness Rockwell R15N83
Surface Finish40 Ra

Some of the values displayed above may have been converted from their original units and/or rounded in order to display the information in a consistent format. Users requiring more precise data for scientific or engineering calculations can click on the property value to see the original value as well as raw conversions to equivalent units. We advise that you only use the original value or one of its raw conversions in your calculations to minimize rounding error. We also ask that you refer to MatWeb's terms of use regarding this information. Click here to go back to viewing the property data in MatWeb's normal format.

Users viewing this material also viewed the following:
AK Steel 17-4 PH® Precipitation Hardening Stainless Steel, Condition H 900
Kinetics MIM 420 Stainless Steel (Oil Quench Heat Treat)
420 Stainless Steel
AISI Type S21800 Stainless Steel, 10% cold reduction
AISI Type S21800 Stainless Steel, 70% cold reduction

NKINET09 / 17742

Free Trade Publications, Click Here!
Free Trade Publications, Click Here!

Please read our License Agreement regarding materials data and our Privacy Policy. Questions or comments about MatWeb? Please contact us at webmaster@matweb.com. We appreciate your input.

The contents of this web site, the MatWeb logo, and "MatWeb" are Copyright 1996-2024 by MatWeb, LLC. MatWeb is intended for personal, non-commercial use. The contents, results, and technical data from this site may not be reproduced either electronically, photographically or substantively without permission from MatWeb, LLC.